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Abstract—Mobile crowdsensing has emerged as an efficient
sensing paradigm which combines the crowd intelligence and
the sensing power of mobile devices, e.g., mobile phones and
Internet of Things (IoT) gadgets. This article addresses the
contradicting incentives of privacy preservation by crowdsensing
users and accuracy maximization and collection of true data by
service providers. We firstly define the individual contributions
of crowdsensing users based on the accuracy in data analytics
achieved by the service provider from buying their data. We then
propose a truthful mechanism for achieving high service accuracy
while protecting the privacy based on the user preferences. The
users are incentivized to provide true data by being paid based
on their individual contribution to the overall service accuracy.
Moreover, we propose a coalition strategy which allows users to
cooperate in providing their data under one identity, increasing
their anonymity privacy protection, and sharing the resulting
payoff. Finally, we outline important open research directions in
mobile and people-centric crowdsensing.

Index Terms—Privacy protection, crowdsensing coalition, data
analytics, privacy-preserving crowdsensing.

I. INTRODUCTION

The proliferation of mobile devices with built-in sensors has
made mobile crowdsensing an efficient sensing paradigm espe-
cially in people-centric and Internet of Things (IoT) services.
Crowdsensing users collect sensing data using their personal
mobile devices, e.g., mobile phones and IoT gadgets. However,
the development of crowdsensing services is impeded by many
challenges, especially the criticism on the privacy protection of
crowdsensing users. Service providers require true data which
is a key factor in optimizing data originated services [1]. This
introduces contradicting incentives of maximizing the privacy
protection of users and the prediction accuracy of service
providers. Most of the existing incentive models in the lit-
erature are monetary motivated with sole profit maximization
objective, e.g., [2]–[4], while the privacy incentive of users is
neglected. Therefore, conventional monetary-based incentive
models are inapplicable in privacy preserving crowdsensing
systems, and new privacy-aware incentive models are required.
Several major questions related to developing privacy-aware
incentive models in mobile crowdsensing arise. First, how does
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the crowdsensing service define the contributions and payoff
allocations of users with varying privacy levels? Second, do
crowdsensing coalitions change the attained privacy of the
cooperative users? Third, how do cooperative users divide the
coalition payoff among themselves?

This article provides answers for the aforementioned ques-
tions by presenting a novel incentive framework for privacy
preservation and accuracy maximization in mobile crowdsens-
ing. The sensing users select their preferred data anonymiza-
tion levels without knowing the privacy preferences of the
other users. The data anonymization is inversely proportional
to the accuracy of data analytics of the service provider.
Accordingly, the users are paid based on their marginal contri-
butions to the service accuracy. The users can be also penalized
with a negative payoff if they cause a marginal harm to the
service accuracy, e.g., an outlier providing misleading data.
Moreover, a set of k cooperative users can jointly work by
forming a crowdsensing coalition, increasing the anonymity
privacy protection measured by the k-anonymity metric. The
total coalition payoff is then divided among the cooperative
users based on their marginal contributions to the coalition’s
data quality. Our experiments on a real-world dataset of
crowdsensing activity recognition system show that the payoff
allocation of a particular user does not directly depend on
the contributed data size but on the data quality. Likewise,
the payoff allocation is found to decrease as the privacy level
increases.

The rest of this article is organized as follows. We first
present an overview of mobile crowdsensing in people-centric
and IoT services and review some related incentive mecha-
nisms. Next, we discuss the privacy preservation in mobile
crowdsensing. Then, we propose an incentive framework for
privacy preservation and accuracy maximization in crowdsens-
ing services. After that, we present numerical experiments
based on a real-world crowdsensing dataset. Finally, we outline
some interesting research directions and conclude the article.

II. MOBILE CROWDSENSING AND IOT

This section first gives an overview of mobile crowdsensing
in IoT and then reviews some monetary incentive mechanisms
in mobile crowdsensing.

A. Architectures and Data Management

In mobile crowdsensing, mobile devices and human intelli-
gence are jointly adopted for collecting sensing data regardless
of geographic separation among users and service providers.
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As shown in Figure 1, the design of mobile crowdsensing
services includes the following stages:
• Data Sensing and Gathering: Crowdsensing users sense

and collect data using mobile devices including phones,
wearable devices, and in-vehicle sensing devices. Users
can also annotate the sensory data with subjective obser-
vations and reports such as their emotions and surround-
ing events. The data is sent to the cloud server through
various types of networks including cellular and Wi-Fi
networks.

• Data Analytics: After receiving the raw data from the
users, cloud computing can be used to store and pro-
cess the large-scale data. Data analytics, e.g., machine
learning methods, are typically applied to extract useful
information and make effective predictions. Services also
support data visualization, generate reports, and provide
platforms to share the outcomes with other collaborative
entities, e.g., social networking services.

B. Applications

Mobile crowdsensing has become an efficient sensing
paradigm in people-centric and IoT services. People-centric
services contain sensing, computing, and communication com-
ponents that aim to assist human life. The following are some
pertinent crowdsensing applications.
• Traffic Monitoring: Mobile Millennium1 is a traffic

crowdsensing service. Millennium collects geolocation
data from taxi drivers. It also assimilates other data
obtained in realtime from radars, loop detectors and
historical databases. The traffic information can be ac-
cessed by drivers for accurate real-time traffic conditions,
e.g., traffic congestion points.

• Wi-Fi Sharing: WiFi-Scout2 is a crowdsensing service for
sharing reviews and connection quality of Wi-Fi hotspots.
Users can easily search for free and paid Wi-Fi hotspots
covering the locations that they will be visiting. The users
are also rewarded based on their compliance and review
quality.

• Healthcare: PatientsLikeMe3 is a healthcare crowdsens-
ing service that collects health data from patients. The
patients provide their experience on medication, supple-
ment, or devices. PatientsLikeMe also sells the collected
data to pharmaceutical companies in order to improve and
develop effective medication and healthcare equipment.

C. Monetary Incentive Models

Mobile crowdsensing should incorporate efficient incentive
mechanisms to attract and retain enough crowdsensing users.
In [5], the authors compared the resulting data quality and user
compliance of three incentive schemes. The uniform scheme
pays user at a fixed rate of 4 cents per completed task. The
variable scheme selects the payoff in the range of 2 to 12 cents
based on the required task and user performance. Finally, the

1http://traffic.berkeley.edu, accessed on 18 December 2016.
2http://wifi-scout.sns-i2r.org, accessed on 18 December 2016.
3https://www.patientslikeme.com, accessed on 18 December 2016.

hidden scheme includes a lottery factor in defining the payoff
values where the users are not informed of the expected payoff
before completing the task. The study showed that the variable
scheme reduces the total cost by 50% compared to the uniform
scheme for the same completion rate and performance. The
hidden scheme is found to be the least effective incentive
scheme.

Next, we review monetary incentive mechanisms for mobile
crowdsensing with an emphasis on reverse auction mecha-
nisms [6] as they fit well and are commonly applied for
mobile crowdsensing with multiple users. As shown in Fig-
ure 2, a typical reverse auction framework occurs between
the crowdsensing users and service. The crowdsensing users
compete among themselves to perform the sensing task. The
service provider first announces the description of the crowd-
sensing tasks to potential mobile users. Users are rational
entities and will set their bids based on the cost of the
crowdsensing task. In order to maximize the utility of the
crowdsensing service, the auction system determines the task
assignment and payoff of each user including both selected
and rejected bids. For example, the crowdsensing tasks are
assigned to the winning users with the lowest bids to perform
the crowdsensing tasks and submit the data to the service.
The service provider will provide the agreed payoff to the
winning users. Table I provides a summary of the monetary
incentive models reviewed in this section. From the table,
“risk-neutral” means that the user is unaware of the loss of
its payoff, e.g., when choosing between guaranteed $5 and
conditioned $10 payoffs. A “profitable” solution guarantees a
nonnegative utility for the service provider. An “individual
rational” solution guarantees a nonnegative utility for each
user. A “truthful” solution guarantees that the users cannot
increase their payoff by submitting misleading bids for the
crowdsensing task. Therefore, a truthful incentive mechanism
provides a dominant strategy for rational users in bidding their
true cost of performing the crowdsensing task.

We divide the incentive schemes into two main categories
of threshold winner and contribution-dependent payoffs.

1) Threshold Winner Payoff: In this payoff scheme, only
the winning users will be paid for performing the sensing task
and there is no payoff allocation for rejected users. For exam-
ple, the authors in [7] presented a Bayesian reverse auction
model for target tracking with crowdsourcing, assuming that
the value estimate of a user can be drawn from a continuous
probability distribution. The residual energy of the mobile
devices has an impact on the prior distribution of the user
bids. The objective of this model is maximizing the total target
tracking utility of the service by solving the multiple-choice
knapsack problem. Likewise, the authors in [2] proposed two
complementary payoff scenarios of user-centric and platform-
centric schemes. In the user-centric scheme, the service defines
the payoff using a reverse auction by following the steps shown
in Figure 2. In the platform-centric scheme, the crowdsensing
problem is formulated as a Stackelberg game. The Nash
equilibrium is solved using backward induction and found
to be unique. A major limitation of [2], [7] is assuming
a known prior distribution of user bids. In the real world,
users can collude and submit misleading bids to increase their
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Fig. 1: System model of mobile crowdsensing.

TABLE I: Summary of the monetary incentive models in mobile crowdsensing.

MODEL MAIN ENTITIES PAYOFF SCHEME MAXIMIZATION
OBJECTIVE

SOLUTION
PROPERTIES

Bayesian
auction [7]

Multiple risk-neutral
users

Threshold winner
payoff

The target tracking
accuracy

Bayesian Nash
equilibrium (profitable
and individual rational)

Sealed-bid
auction [2]

Fixed budget with
risk-neutral users

Threshold winner
payoff

The service utility
(more user and less
payoff)

Profitable and
individual rational

Stackelberg
competition [2]

A leader (service) and
followers (users)

Threshold winner
payoff

The service utility Nash equilibrium
(profitable and
individual rational)

Vickrey
auction [3]

Multiple risk-neutral
users

Contribution-
dependent
payoff

Data integrity Profitable and truthful

All-pay
auction [4]

Risk-averse and
risk-neutral users

All-pay
contribution-dependent
payoff

The service utility Nash equilibrium
(profitable and
individual rational)

Service provider

Advertise the sensing tasks

Submit bids, i.e., required 
payoff

Determine the list of winners 
and payoff allocations

Finish the tasks and send the 
sensing data

Send the agreed payoff

Crowdsensing users

Fig. 2: Crowdsensing incentive mechanism as a reverse auc-
tion.

own payoff. This problem is solved in contribution-dependent
payoff schemes as discussed next.

2) Contribution-Dependent Payoff: A practical incentive
mechanism requires all participants to be truthful. One princi-
pal way in achieving truthful user interaction is by choosing
an appropriate pricing scheme where the payoff allocations
of participants are not solely defined by their bids. The au-
thors in [3] applied the Vickrey-Clarke-Groves (VCG) reverse

auction with the objective of minimizing the sum of payoff
values to crowdsensing users. A user is paid based on the
difference between the sum of costs with and without that
particular user. Reporting truthful bids is a weakly-dominant
strategy in the VCG auction. The authors in [4] modeled the
mobile crowdsensing problem as an all-pay auction where the
crowdsensing users are not required to submit their bids at
the beginning of the auction. Instead, the payoff is calculated
based on the user contributions after completing the sensing
tasks. The users with the highest contribution receive a payoff
while the rest of the users do not receive any payoff allocation.

III. PRIVACY PRESERVATION IN MOBILE CROWDSENSING

Even though most of the existing works in the literature
focus on monetary incentive models to achieve the maximum
possible payoff allocation, privacy preservation is still a top
priority for crowdsensing users. In this section, we first discuss
the data anonymization properties which can be used to mea-
sure the privacy protection. Then, we discuss the challenges
of privacy preservation in mobile crowdsensing.
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A. Privacy Properties and Data Anonymization

Mobile crowdsensing comes with challenging privacy is-
sues. In particular, crowdsensing users are typically concerned
that their personal information can be leaked from the col-
lected data. Personal information of users can be categorized
into three main classes:

• Explicit identifiers are the data attributes which directly
reveal the user identity, e.g., full name and social security
number.

• Non-explicit identifiers can be combined with background
knowledge to reveal the user identity, e.g., zip code and
birth date.

• Sensitive attributes can be utilized to extract private
information about the user, e.g., realtime activity tracking
using accelerometer data [8].

Explicit identifiers should be completely removed before
trading the crowdsensing data among businesses. To pro-
tect the non-explicit identifiers and sensitive attributes, data
anonymization methods can be applied to sensing data.

Privacy is defined by the information gain of an adversary.
The following syntactic privacy properties can be used to
define of the privacy protection requirements.

• k-anonymity [9]: This property is developed to guarantee
that a data sample of a particular user in public datasets
cannot be re-identified by potential intruders. Specifically,
for a crowdsensing service to possess the k-anonymity
property, each user should not be distinguishable from
at least k − 1 other users. For example, a user should
be unidentifiable by combining the available gender and
birth date crowdsensing data. This can be achieved by
transformation techniques, such as identity generalization
and suppression, to reduce the granularity of the data. For
example, the birth dates can be replaced by date ranges
instead of the exact values.

• l-diversity [10]: The k-anonymity does not work well if
the sensitive data attributes lack diversity. For example,
if a few users of a healthcare crowdsensing service used
a particular zip code and are infected by a disease, then
background knowledge can be used to reveal the health
privacy of a user which is known by the adversary to use
that zip code. In order to avoid this privacy threat, the
l-diversity property requires that each equivalence class
has at least l “well-represented” values. An equivalence
class is a set of data samples with the same anonymized
data attributes.

• t-closeness [11]: The t-closeness property requires the
distribution of sensitive values within each equivalence
class to be “close” to their distribution in the entire orig-
inal dataset. t-closeness is an extension of the l-diversity
model as it takes the distribution of sensitive values into
account. t-closeness can be achieved by adding random
noise to sensitive data attributes. For example, adding
Gaussian noise to accelerometer data can restrict the
tracking of particular activities.

 Mediator
[Auction]

Service provider
[Data analytics]

Price

Data

Data 
anonymization

Payoff
Service 

customers

Crowdsensing users

Coalition

Of k users

[k-anonymity]

Sensing 
data

Service

Direct 
communication

Fig. 3: System model of the privacy preserving crowdsensing
framework supporting both data anonymization and identity
generalization through crowdsensing coalition formulation.
Cooperative users are connected using device-to-device (D2D)
communication.

B. Challenges of Privacy Preservation in Mobile Crowdsens-
ing

The authors in [12] reviewed the privacy threats and
protection methods during the task management in mobile
crowdsensing. A taxonomy of privacy methods was provided
including pseudonyms, connection anonymization, and spatial
cloaking. The authors also highlighted the challenging pro-
cess of defining the user contribution in incentive-based task
assignment. The authors in [13] discussed the privacy and data
integrity of mobile crowdsensing. The privacy is observed to
be user-dependent.

Achieving the syntactic privacy properties can reduce the
accuracy of data analytics algorithms. Applying a strict data
anonymization to all users results in a poor accuracy of the
data analytics. Instead, the users can be given the choice of
setting their preferable data anonymization level such that
reliable users receive high payoff allocation. The trade-off
between the privacy preservation and accuracy maximization
should also be taken into consideration which is the main
objective of the next section.

IV. INCENTIVE MECHANISM FOR PRIVACY PRESERVING
CROWDSENSING

In this section, we introduce a privacy preserving incentive
framework for mobile crowdsensing where participating users
can protect their private data by data anonymization. The level
of data protection will accordingly be used to set the resulting
payoff allocation such that the users have an incentive in
providing their true data. We first present the system model
and major entities. Then, we discuss the proposed incentive
framework which is intended to maximize the accuracy of
data analytics while preserving the privacy of the crowdsensing
users.

A. System Model

As shown in Figure 3, the crowdsensing system under
consideration consists of the following three main entities:
• Crowdsensing users are the participants which col-

lect sensing data using their personal mobile devices,
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e.g., mobile phones and IoT gadgets. The contribution
of a particular user to the crowdsensing community is
defined based on the quality of the sensing data from
the data analytics perspectives. A user with positive
contribution to the sensing process is considered pivotal.
The users can apply data anonymization, e.g., adding
noise to the sensing data, to protect their privacy and
personally-identifying information. Additionally, crowd-
sensing coalitions can be built as an efficient scheme for
achieving k-anonymity protection, where k is the number
of cooperative users in the coalition.

• A service provider buys data from the crowdsensing
users through a mediator, applies data analytics, and
delivers a service to a set of customers. The provider
makes a profit by charging the customers a subscription
fee.

• A mediator is the auction management entity that con-
trols the exchange of data between the crowdsensing users
and the service provider. Moreover, the mediator divides
the payoff received from the service provider among the
crowdsensing users based on their contributions to the
crowdsensing system.

We next discuss the privacy preserving model through which
the crowdsensing users can sell data to the service provider
and receive a payoff according to their individual contributions
as illustrated in Figure 3. First, we define the individual
contributions and resulting payoffs of the users from data an-
alytics perspectives. Second, we develop a privacy preserving
mechanism which gives the users an incentive for contributing
their true data with the least possible data anonymization
level. Third, we consider the case where the users can form
a crowdsensing coalition for identity generalization, and we
present a fair payoff allocation among the cooperative users.

B. Data Analytics

Crowdsensing data D = {(xi, yi)}Li=1 usually includes
tuples of sensing feature set xi ∈ RM and a class label yi ∈ R,
where L is the number of data tuples and M is the number of
data attributes. The feature set xi includes the sensing data,
e.g., images in vision services and geographic coordinates in
transport services. The class label yi contains human input and
is only available in supervised data analytics, e.g., specifying
accident events in transport services. After collecting sufficient
data, the service provider applies data analytics methods,
e.g., deep learning [14], to build data originated services. For
example, transport services can provide accurate prediction
of vehicle arrival times and road congestions. We denote the
accuracy function of the data analytics model trained using
dataset D as f (D). f (D) measures the performance of the
service in providing accurate prediction of the ground truth.

C. Incentive Mechanism Design

We consider a set of N users which are connected to a pri-
vacy preserving crowdsensing service. Each user n generates
true sensing dataDn and selects a data anonymization level pn.
The data anonymization can be performed by adding random
noise to the true data xi subject to pn, e.g., Gaussian noise

N (0, pnIM ) with zero mean and a variance of pn, where
IM is the identity matrix of size M . Each user submits its
anonymized data D̃n and data anonymization level pn to the
crowdsensing mediator, without knowing the preferences of
the other users. The full anonymized dataset D̃ = ∪

1≤n≤N
D̃n

and data anonymization preferences P = {p1, . . . , pN} are
collected by the mediator from all users. According to the
VCG auction [6], the mediator calculates the payoff of user n
as follows:

Fn = f(D̃)− f(D̃−n), (1)

where D̃−n is the anonymized data after excluding the data
of user n. The following three cases for the payoff function
exist:
• If Fn > 0, the user will receive a positive payoff

allocation of Fn as its data contribution increases the
accuracy. These users are called pivotal.

• If Fn = 0, the user does not change the crowdsens-
ing choice nor the service accuracy. Such users receive
zero payoff and can be advised to decrease their data
anonymization level.

• If Fn < 0, the user has a negative contribution, e.g., ex-
cessive data anonymization, and will accordingly be
penalized with a negative payoff. The data collected from
such users should not be used in the data analytics.

Sending the true data to the service provider is a weakly-
dominant strategy under the VCG rules regardless of the data
anonymization levels of the other users.

D. Crowdsensing Coalition
A set of k users can cooperate to form a crowdsensing

coalition, denoted by K, which increases the privacy level
by providing the data of the cooperative users under one
generalization identity and achieving k-anonymity privacy
protection. Those k users must be connected using device-to-
device (D2D) communication without traversing the service
provider. The generalization identity guarantees that a data
sample cannot be used to identify its source from the k
cooperative users. K is a virtual alliance of users which work
collectively and are seen as one sensing entity by the service
provider. Specifically, the service provider cannot identify the
source of data samples as a particular data sample can relate
to any of the k cooperative users. The payoff of the coalition
is

FK = f(D̃)− f(D̃−K), (2)

where D̃−K is the anonymized data after excluding the data
from all users in the coalition K. Solution concepts from
cooperative game theory, such as the Shapley value and Nash
bargaining solution [15], can be applied to share the resulting
payoffs among the cooperative users in the coalition K.
From the Shapley value, the payoff allocation, i.e., monetary
payment, of each user is defined based on its contribution to
the coalition.

V. NUMERICAL RESULTS

In this section, we present numerical experiments to evaluate
the performance of the proposed privacy preserving frame-
work.



6

A. System Setup

In this section, we use a real-world dataset [8] of crowd-
sensing activity recognition system of six activities including
walking, jogging, upstairs, downstairs, sitting, and standing.
The dataset includes L = 1, 098, 207 samples of accelerometer
data which were collected by N = 36 users. The mobile
devices sampled at a rate of 20Hz resulting in M = 120
data features of framed 3-axial acceleration. We assume that
the service provider uses deep learning [14] to develop the
prediction service. The service provider buys the crowdsensing
data from the users through the auction mediator and sells an
activity tracking service to customers.

We assume that Users 2 and 3 protect their sensitive activ-
ities by adding varied levels of Gaussian noise N (0, pnIM )
to the acceleration data. Accordingly, Users 2 and 3 acquire
the t-closeness property, where t is equal to the variance
of the added noise pn. The payoff of each user is defined
based on the payoff rule in (1). Moreover, Users 2 and 3 can
collaborate in the crowdsensing coalition K to acquire the k-
anonymity protection, where k = 2 for two cooperative users.
The coalition’s total payoff is defined based on the payoff rule
in (2), while the payoff sharing among Users 2 and 3 is defined
according to the Shapley value.

B. User Contributions and Pivotal Users

Figure 4 shows the contributed data rates from each user
and the resulting service accuracy f(·) by training a deep
learning model on the data of each user separately. Two
key results can be noted. Firstly, the data rate varies among
different users. However, there is no correlation between the
service accuracy from the data analytics perspective and the
contributed data rate from the sensing perspective. The service
accuracy depends on the quality of the used mobile device,
user’s performance during task execution, and data annotation.
For example, User 1 contributes more data than that of User 2,
while the accuracy resulting from the data of User 1 is lower
than that of User 2. Secondly, Users 3 and 6 are pivotal and
they score the highest standalone accuracy values of 68.3%
and 68.1%, respectively. The standalone accuracy for the rest
of the users is less than 64%. The pivotal users are important
to the service provider to ensure high service accuracy.

C. The Impact of Privacy on Accuracy

In Figure 5a, we consider the impact of the data anonymiza-
tion level on the accuracy of the crowdsensing service.
Several important results are observed. Firstly, there is an
inverse relationship between the prediction accuracy and the
data anonymization level. The maximum service accuracy of
f(D) = 92.5% is achieved when all users provide true data
samples without any anonymization. This maximum value
decreases as User 3 increases the level of data anonymization.
High level of data anonymization can be required by the users
to protect their privacy. Secondly, the service provider has
an incentive of rejecting users with high data anonymization
levels. For example, the service will reject User 3 when its
data anonymization level is greater than 8 which is labeled as

5 10 15 20 25 30 35

User Index

0

20

40

60

80
Contributed data rate#10
Standalone accuracy

Pivotal users

Fig. 4: User contribution to the crowdsensing service.

“critical point 1” in Figure 5a. This is due to the resulting harm
to the overall system accuracy. Thirdly, the prediction accuracy
decreases as more users adopt the data anonymization scheme.
For example, the accuracy is negatively affected when both
Users 2 and 3 apply the data anonymization compared to the
case of User 3 only. Accordingly, the crowdsensing system
has an incentive for reducing the number of users applying
the data anonymization scheme. As presented next, this can
be achieved by increasing the payoff allocation of users which
provide their true data.

D. Payoff Allocation

Figure 5b shows the payoff allocation of Users 2 and 3
under the varied data anonymization levels. Firstly, the payoff
allocation of any user decreases as its data anonymization
level increases. For high data anonymization level which
is equal to or greater than the over anonymization levels
specified in Figure 5b, the users will be penalized by receiving
negative payoff. Secondly, pivotal users receive a higher payoff
compared to normal and low-performing users, e.g., the payoff
of User 3 is greater than that of User 2. For the crowdsensing
coalition case, the payoff allocation to the cooperative users
is found using the Shapley value which reflects the individual
contribution of each user. The cooperative users receive not
only the same payoff in both the crowdsensing coalition and
the standalone cases, but also a higher level of the k-anonymity
privacy protection.

VI. FUTURE DIRECTIONS

Based on the proposed incentive framework, the following
open research directions can be further pursued.

A. Cooperation and Competition Among Service Providers

To collect high-quality data, service providers may cooper-
ate or compete with each other to attract and retain crowdsens-
ing users. With cooperation, service providers collude to set
payoff strategies which maximize their profit as a cooperative
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Fig. 5: Performance of the proposed privacy preserving frame-
work under varied privacy levels. (a) The resulting accuracy
of the deep learning service trained on the crowdsensing data.
(b) The payoff allocation of Users 2 and 3. The privacy level
is equal to the variance of the added Gaussian noise.

coalition. In the competitive scenario, service providers can
apply non-cooperative game and Nash equilibrium solutions
for the service’s subscription fee and crowdsensing data’s
prices. The strategic interaction among providers can also
benefit the users in making higher revenues.

B. Incentive Mechanism Design for Fog Computing

Analyzing the crowdsensing data can be computationally
expensive. Fog computing provides a solution by allowing
partial data processing at the mobile devices owned by users.
In such a design, the users are paid not only for the sensing
data, but also for the available computing power. Incentive
mechanisms are required to attract large contributions from
users as fog nodes. Likewise, mobile devices come with
varying hardware resources; methods for defining the user
contributions in fog computing are also required.

C. Dynamic and Heterogeneous Crowdsensing

Crowdsensing users can be heterogeneous in term of the
sensing precision and technical experience. Thus, the service
provider has an incentive of attracting powerful users by in-
creasing their payoff allocations, and the incentive mechanism
has to optimize these payoff values. Additionally, users asyn-
chronously join and leave the crowdsensing system. Stochastic
optimization methods, e.g., Markov decision processes, can be
formulated to determine the optimal payoff rates over time,
e.g., to attract users during the off-peak times.

VII. CONCLUSION

Privacy awareness has the potential of significantly boosting
the performance of mobile crowdsensing, attracting more
sensing users, and enabling the protection of privileged in-
formation. This article has presented an incentive mechanism
for privacy preservation and accuracy maximization in mobile
crowdsensing. It has been shown that the coalition strategy
can be used by users to send their data under one generalized
identity, increase the k-anonymity privacy protection, and
share the resulting payoffs among cooperative users based on
their individual sensing contribution. The proposed incentive
framework has been evaluated using a real-world crowd-
sensing dataset. Finally, open research directions have been
presented.
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